/* * Copyright (C) 2017 The Contributors * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * A copy of the GNU General Public License can be found in the file * "gpl.txt" in the top directory of this repository. */ #include #define ver(...) _ver(cpu_verbose, 0, __VA_ARGS__) #define ver2(...) _ver(cpu_verbose, 1, __VA_ARGS__) #define ver3(...) _ver(cpu_verbose, 2, __VA_ARGS__) int32_t cpu_verbose = 0; #define MIDAS_ABS "midas.abs" #define CPU_FREQ 7000000 #define PER_SEC 100000 #define APP_START 0x10000 #define RAM_START 0x0 #define RAM_SIZE 0x100000 #define ROM_START 0x100000 #define ROM_SIZE 0x10000 typedef void (*hw_init_t)(void); typedef void (*hw_quit_t)(void); typedef bool (*hw_exec_t)(void); typedef uint32_t (*hw_read_t)(uint32_t off, int32_t sz); typedef void (*hw_write_t)(uint32_t off, int32_t sz, uint32_t val); typedef struct { uint32_t addr_beg; uint32_t addr_end; uint32_t irq; hw_init_t init; hw_quit_t quit; hw_exec_t exec; hw_read_t read; hw_write_t write; } hw_t; typedef struct { uint32_t text_loc; uint32_t text_len; uint32_t data_loc; uint32_t data_len; uint32_t bss_loc; uint32_t bss_len; size_t load_len; SDL_RWops *ops; } abs_t; static uint64_t freq; static uint64_t quan; SDL_mutex *cpu_mutex; static bool reset = true; static uint8_t ram_data[RAM_SIZE]; static uint8_t rom_data[ROM_SIZE]; static uint32_t ram_ro_beg = 0x1234; static uint32_t ram_ro_end = 0x1234; static uint32_t ram_rw_beg = 0x1234; static uint32_t ram_rw_end = 0x1234; static uint32_t rom_ro_beg; static uint32_t rom_ro_end; static uint32_t rom_rw_beg; static uint32_t rom_rw_end; static hw_t hw_map[] = { { 0x180000, 0x200000, 0, fpu_init, fpu_quit, fpu_exec, fpu_read, fpu_write }, { 0x200000, 0x280002, 1, vid_init, vid_quit, vid_exec, vid_read, vid_write }, { 0x3a0001, 0x3a4001, 4, tim_init, tim_quit, tim_exec, tim_read, tim_write }, { 0x3a4001, 0x3a8001, 0, lcd_init, lcd_quit, lcd_exec, lcd_read, lcd_write }, { 0x3a8001, 0x3ac001, 5, ser_init, ser_quit, ser_exec, ser_read, ser_write }, { 0x3ac001, 0x3b0001, 5, mid_init, mid_quit, mid_exec, mid_read, mid_write }, { 0x3b0001, 0x3b4001, 0, fdd_init, fdd_quit, fdd_exec, fdd_read, fdd_write }, { 0x3b4001, 0x3b8001, 0, snd_init, snd_quit, snd_exec, snd_read, snd_write }, { 0x3b8001, 0x3bc001, 0, led_init, led_quit, led_exec, led_read, led_write }, { 0x3bc001, 0x3c0001, 3, kbd_init, kbd_quit, kbd_exec, kbd_read, kbd_write } }; static hw_t *hw_by_addr(uint32_t addr) { for (int32_t i = 0; i < ARRAY_COUNT(hw_map); ++i) { if (addr >= hw_map[i].addr_beg && addr < hw_map[i].addr_end) { return hw_map + i; } } return NULL; } static void hw_init(void) { inf("starting hardware"); for (int32_t i = 0; i < ARRAY_COUNT(hw_map); ++i) { hw_map[i].init(); } } static void hw_quit(void) { inf("halting hardware"); for (int32_t i = 0; i < ARRAY_COUNT(hw_map); ++i) { hw_map[i].quit(); } } static uint32_t hw_exec(void) { uint32_t irq = 0; for (int32_t i = 0; i < ARRAY_COUNT(hw_map); ++i) { if (hw_map[i].exec() && hw_map[i].irq > irq) { irq = hw_map[i].irq; } } return irq; } static uint32_t hw_off(hw_t *hw, uint32_t addr) { if ((hw->addr_beg & 0x1) == 0) { return addr - hw->addr_beg; } return (addr - hw->addr_beg) / 2; } static void open_abs(const char *path, abs_t *abs) { abs->ops = SDL_RWFromFile(path, "rb"); if (abs->ops == NULL) { fail("error while opening .abs file %s", path); } if (SDL_ReadBE16(abs->ops) != 0x601b) { fail("invalid .abs file %s", path); } abs->text_len = SDL_ReadBE32(abs->ops); abs->data_len = SDL_ReadBE32(abs->ops); abs->bss_len = SDL_ReadBE32(abs->ops); SDL_ReadBE32(abs->ops); SDL_ReadBE32(abs->ops); abs->text_loc = SDL_ReadBE32(abs->ops); SDL_ReadBE16(abs->ops); abs->data_loc = SDL_ReadBE32(abs->ops); abs->bss_loc = SDL_ReadBE32(abs->ops); inf("text 0x%x:0x%x data 0x%x:0x%x bss 0x%x:0x%x", abs->text_loc, abs->text_len, abs->data_loc, abs->data_len, abs->bss_loc, abs->bss_len); abs->load_len = (size_t)SDL_RWsize(abs->ops) - 36; } static void load_abs(const char *path, abs_t *abs, uint8_t *data) { size_t loaded = 0; while (loaded < abs->load_len) { size_t n_rd = SDL_RWread(abs->ops, data + loaded, 1, abs->load_len - loaded); if (n_rd == 0) { fail("error while reading .abs file %s", path); } loaded += n_rd; } SDL_RWclose(abs->ops); } static void bios_init(void) { inf("loading BIOS file %s", bios); abs_t abs; open_abs(bios, &abs); if (abs.text_loc != ROM_START || abs.text_loc + abs.text_len != abs.data_loc || abs.load_len != abs.text_len + abs.data_len || abs.load_len > ROM_SIZE) { fail("invalid BIOS file %s", bios); } load_abs(bios, &abs, rom_data); rom_ro_beg = abs.text_loc; rom_ro_end = abs.text_loc + abs.text_len + abs.data_len; rom_rw_beg = abs.bss_loc; rom_rw_end = abs.bss_loc + abs.bss_len; ver("rom_ro_beg 0x%08x rom_ro_end 0x%08x", rom_ro_beg, rom_ro_end); ver("rom_rw_beg 0x%08x rom_rw_end 0x%08x", rom_rw_beg, rom_rw_end); } static void midas_init(void) { SDL_RWops *ops = SDL_RWFromFile(MIDAS_ABS, "rb"); if (ops == NULL) { return; } SDL_RWclose(ops); inf("loading MIDAS file " MIDAS_ABS); abs_t abs; open_abs(MIDAS_ABS, &abs); if (abs.text_loc != APP_START || abs.text_loc + abs.text_len != abs.data_loc || abs.data_loc + abs.data_len != abs.bss_loc || abs.load_len != abs.text_len + abs.data_len || abs.bss_loc + abs.bss_len > RAM_SIZE) { fail("invalid MIDAS file " MIDAS_ABS); } load_abs(MIDAS_ABS, &abs, ram_data + APP_START - RAM_START); ram_ro_beg = ram_rw_beg = APP_START; ram_ro_end = ram_rw_end = RAM_START + RAM_SIZE; } uint32_t m68k_read_disassembler_8(uint32_t addr) { return m68k_read_memory_8(addr); } uint32_t m68k_read_disassembler_16(uint32_t addr) { return m68k_read_memory_16(addr); } uint32_t m68k_read_disassembler_32(uint32_t addr) { return m68k_read_memory_32(addr); } uint32_t m68k_read_memory_8(uint32_t addr) { ver3("mem rd 0x%08x:8", addr); if (addr >= ram_ro_beg && addr <= ram_ro_end - 1) { return ram_data[addr - RAM_START]; } if (addr >= ram_rw_beg && addr <= ram_rw_end - 1) { return ram_data[addr - RAM_START]; } if (addr >= rom_ro_beg && addr <= rom_ro_end - 1) { return rom_data[addr - ROM_START]; } if (addr >= rom_rw_beg && addr <= rom_rw_end - 1) { // ROM has its BSS section in RAM. return ram_data[addr - RAM_START]; } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { return hw->read(hw_off(hw, addr), 1); } if (addr <= APP_START - 1) { return ram_data[addr]; } fail("invalid read 0x%08x:8", addr); } uint32_t m68k_read_memory_16(uint32_t addr) { ver3("mem rd 0x%08x:16", addr); if (addr >= ram_ro_beg && addr <= ram_ro_end - 2) { return ((uint32_t)ram_data[addr - RAM_START + 0] << 8) | ((uint32_t)ram_data[addr - RAM_START + 1] << 0); } if (addr >= ram_rw_beg && addr <= ram_rw_end - 2) { return ((uint32_t)ram_data[addr - RAM_START + 0] << 8) | ((uint32_t)ram_data[addr - RAM_START + 1] << 0); } if (addr >= rom_ro_beg && addr <= rom_ro_end - 2) { return ((uint32_t)rom_data[addr - ROM_START + 0] << 8) | ((uint32_t)rom_data[addr - ROM_START + 1] << 0); } if (addr >= rom_rw_beg && addr <= rom_rw_end - 2) { // ROM has its BSS section in RAM. return ((uint32_t)ram_data[addr - RAM_START + 0] << 8) | ((uint32_t)ram_data[addr - RAM_START + 1] << 0); } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { return hw->read(hw_off(hw, addr), 2); } if (addr <= APP_START - 2) { return ((uint32_t)ram_data[addr + 0] << 8) | ((uint32_t)ram_data[addr + 1] << 0); } fail("invalid read 0x%08x:16", addr); } uint32_t m68k_read_memory_32(uint32_t addr) { ver3("mem rd 0x%08x:32", addr); if (reset) { if (addr == 0) { addr += ROM_START; } else if (addr == 4) { addr += ROM_START; reset = false; } else { fail("invalid reset sequence"); } } if (addr >= ram_ro_beg && addr <= ram_ro_end - 4) { return ((uint32_t)ram_data[addr - RAM_START + 0] << 24) | ((uint32_t)ram_data[addr - RAM_START + 1] << 16) | ((uint32_t)ram_data[addr - RAM_START + 2] << 8) | ((uint32_t)ram_data[addr - RAM_START + 3] << 0); } if (addr >= ram_rw_beg && addr <= ram_rw_end - 4) { return ((uint32_t)ram_data[addr - RAM_START + 0] << 24) | ((uint32_t)ram_data[addr - RAM_START + 1] << 16) | ((uint32_t)ram_data[addr - RAM_START + 2] << 8) | ((uint32_t)ram_data[addr - RAM_START + 3] << 0); } if (addr >= rom_ro_beg && addr <= rom_ro_end - 4) { return ((uint32_t)rom_data[addr - ROM_START + 0] << 24) | ((uint32_t)rom_data[addr - ROM_START + 1] << 16) | ((uint32_t)rom_data[addr - ROM_START + 2] << 8) | ((uint32_t)rom_data[addr - ROM_START + 3] << 0); } if (addr >= rom_rw_beg && addr <= rom_rw_end - 4) { // ROM has its BSS section in RAM. return ((uint32_t)ram_data[addr - RAM_START + 0] << 24) | ((uint32_t)ram_data[addr - RAM_START + 1] << 16) | ((uint32_t)ram_data[addr - RAM_START + 2] << 8) | ((uint32_t)ram_data[addr - RAM_START + 3] << 0); } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { return hw->read(hw_off(hw, addr), 4); } if (addr <= APP_START - 4) { return ((uint32_t)ram_data[addr + 0] << 24) | ((uint32_t)ram_data[addr + 1] << 16) | ((uint32_t)ram_data[addr + 2] << 8) | ((uint32_t)ram_data[addr + 3] << 0); } fail("invalid read 0x%08x:32", addr); } void m68k_write_memory_8(uint32_t addr, uint32_t val) { ver3("mem wr 0x%08x:8 0x%02x", addr, val); if (addr >= ram_rw_beg && addr <= ram_rw_end - 1) { ram_data[addr - RAM_START] = (uint8_t)val; return; } if (addr >= rom_rw_beg && addr <= rom_rw_end - 1) { // ROM has its BSS section in RAM. ram_data[addr - RAM_START] = (uint8_t)val; return; } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { hw->write(hw_off(hw, addr), 1, val); return; } if (addr <= APP_START - 1) { ram_data[addr] = (uint8_t)val; return; } // once midas.abs gets loaded, activate RAM if (addr == APP_START) { ram_data[addr] = (uint8_t)val; ram_rw_beg = APP_START; ram_rw_end = RAM_START + RAM_SIZE; return; } fail("invalid write 0x%08x:8 0x%02x", addr, val); } void m68k_write_memory_16(uint32_t addr, uint32_t val) { ver3("mem wr 0x%08x:16 0x%04x", addr, val); if (addr >= ram_rw_beg && addr <= ram_rw_end - 2) { ram_data[addr - RAM_START + 0] = (uint8_t)(val >> 8); ram_data[addr - RAM_START + 1] = (uint8_t)(val >> 0); return; } if (addr >= rom_rw_beg && addr <= rom_rw_end - 2) { // ROM has its BSS section in RAM. ram_data[addr - RAM_START + 0] = (uint8_t)(val >> 8); ram_data[addr - RAM_START + 1] = (uint8_t)(val >> 0); return; } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { hw->write(hw_off(hw, addr), 2, val); return; } if (addr <= APP_START - 2) { ram_data[addr + 0] = (uint8_t)(val >> 8); ram_data[addr + 1] = (uint8_t)(val >> 0); return; } fail("invalid write 0x%08x:16 0x%04x", addr, val); } void m68k_write_memory_32(uint32_t addr, uint32_t val) { ver3("mem wr 0x%08x:32 0x%08x", addr, val); if (addr >= ram_rw_beg && addr <= ram_rw_end - 4) { ram_data[addr - RAM_START + 0] = (uint8_t)(val >> 24); ram_data[addr - RAM_START + 1] = (uint8_t)(val >> 16); ram_data[addr - RAM_START + 2] = (uint8_t)(val >> 8); ram_data[addr - RAM_START + 3] = (uint8_t)(val >> 0); return; } if (addr >= rom_rw_beg && addr <= rom_rw_end - 4) { // ROM has its BSS section in RAM. ram_data[addr - RAM_START + 0] = (uint8_t)(val >> 24); ram_data[addr - RAM_START + 1] = (uint8_t)(val >> 16); ram_data[addr - RAM_START + 2] = (uint8_t)(val >> 8); ram_data[addr - RAM_START + 3] = (uint8_t)(val >> 0); return; } hw_t *hw = hw_by_addr(addr); if (hw != NULL) { hw->write(hw_off(hw, addr), 4, val); return; } if (addr <= APP_START - 4) { ram_data[addr + 0] = (uint8_t)(val >> 24); ram_data[addr + 1] = (uint8_t)(val >> 16); ram_data[addr + 2] = (uint8_t)(val >> 8); ram_data[addr + 3] = (uint8_t)(val >> 0); return; } fail("invalid write 0x%08x:32 0x%08x", addr, val); } uint8_t cpu_peek(int32_t addr) { if (addr >= RAM_START && addr <= RAM_START + RAM_SIZE - 1) { return ram_data[addr - RAM_START]; } if (addr >= ROM_START && addr <= ROM_START + ROM_SIZE - 1) { return rom_data[addr - ROM_START]; } return 0; } void cpu_poke(int32_t addr, uint8_t val) { if (addr >= RAM_START && addr <= RAM_START + RAM_SIZE - 1) { ram_data[addr - RAM_START] = val; } if (addr >= ROM_START && addr <= ROM_START + ROM_SIZE - 1) { rom_data[addr - ROM_START] = val; } } static void inst_cb(void) { uint32_t pc = m68k_get_reg(NULL, M68K_REG_PC); uint32_t op = m68k_read_memory_16(pc); gdb_inst(op == 0x4e4f); if (op == 0x4e4d) { uint32_t sp = m68k_get_reg(NULL, M68K_REG_SP); uint32_t fun = m68k_read_memory_16(sp); switch (fun) { case 1: ver2("BIOS B_RDAV %u", m68k_read_memory_16(sp + 2)); break; case 2: ver2("BIOS B_GETC %u", m68k_read_memory_16(sp + 2)); break; case 3: ver2("BIOS B_PUTC %u %u", m68k_read_memory_16(sp + 2), m68k_read_memory_16(sp + 4)); break; case 4: ver2("BIOS B_RDWR %u 0x%08x %u %u %u", m68k_read_memory_16(sp + 2), m68k_read_memory_32(sp + 4), m68k_read_memory_16(sp + 8), m68k_read_memory_16(sp + 10), m68k_read_memory_16(sp + 12)); break; case 5: ver2("BIOS B_SETV %u 0x%08x", m68k_read_memory_16(sp + 2), m68k_read_memory_32(sp + 4)); break; case 7: ver2("BIOS B_GBPB %u", m68k_read_memory_16(sp + 2)); break; case 8: ver2("BIOS B_THRE %u", m68k_read_memory_16(sp + 2)); break; case 9: ver2("BIOS B_MCHG %u", m68k_read_memory_16(sp + 2)); break; case 10: ver2("BIOS B_DMAP"); break; default: fail("invalid function: BIOS %d", fun); } } else if (op == 0x4e4e) { uint32_t sp = m68k_get_reg(NULL, M68K_REG_SP); uint32_t fun = m68k_read_memory_16(sp); switch (fun) { case 0: ver2("XBIOS X_PIOREC %u", m68k_read_memory_16(sp + 2)); break; case 1: ver2("XBIOS X_SETPRT %u 0x%02x 0x%02x 0x%02x 0x%02x", m68k_read_memory_16(sp + 2), m68k_read_memory_16(sp + 4), m68k_read_memory_16(sp + 6), m68k_read_memory_16(sp + 8), m68k_read_memory_16(sp + 10)); break; case 2: ver2("XBIOS X_FLOPRD 0x%08x 0x%08x %u %u %u %u %u", m68k_read_memory_32(sp + 2), m68k_read_memory_32(sp + 6), m68k_read_memory_16(sp + 10), m68k_read_memory_16(sp + 12), m68k_read_memory_16(sp + 14), m68k_read_memory_16(sp + 16), m68k_read_memory_16(sp + 18)); break; case 3: ver2("XBIOS X_FLOPWR 0x%08x 0x%08x %u %u %u %u %u", m68k_read_memory_32(sp + 2), m68k_read_memory_32(sp + 6), m68k_read_memory_16(sp + 10), m68k_read_memory_16(sp + 12), m68k_read_memory_16(sp + 14), m68k_read_memory_16(sp + 16), m68k_read_memory_16(sp + 18)); break; case 4: ver2("XBIOS X_FORMAT 0x%08x 0x%08x %u %u %u %u %u 0x%08x %u", m68k_read_memory_32(sp + 2), m68k_read_memory_32(sp + 6), m68k_read_memory_16(sp + 10), m68k_read_memory_16(sp + 12), m68k_read_memory_16(sp + 14), m68k_read_memory_16(sp + 16), m68k_read_memory_16(sp + 18), m68k_read_memory_32(sp + 20), m68k_read_memory_16(sp + 24)); break; case 5: ver2("XBIOS X_VERIFY 0x%08x 0x%08x %u %u %u %u %u", m68k_read_memory_32(sp + 2), m68k_read_memory_32(sp + 6), m68k_read_memory_16(sp + 10), m68k_read_memory_16(sp + 12), m68k_read_memory_16(sp + 14), m68k_read_memory_16(sp + 16), m68k_read_memory_16(sp + 18)); break; case 6: ver2("XBIOS X_PRBOOT 0x%08x %u %u %u", m68k_read_memory_32(sp + 2), m68k_read_memory_16(sp + 6), m68k_read_memory_16(sp + 8), m68k_read_memory_16(sp + 10)); break; case 7: ver2("XBIOS X_RANDOM"); break; case 8: ver2("XBIOS X_ANALOG"); break; case 9: ver2("XBIOS X_CLRAFI"); break; case 10: ver2("XBIOS X_APICHK"); break; case 11: ver2("XBIOS X_MTDEFS "); break; default: fail("invalid function: XBIOS %d", fun); } } } void cpu_init(void) { cpu_mutex = SDL_CreateMutex(); if (cpu_mutex == NULL) { fail("SDL_CreateMutex() failed: %s", SDL_GetError()); } freq = SDL_GetPerformanceFrequency(); quan = freq / PER_SEC; inf("freq %" PRIu64 " quan %" PRIu64, freq, quan); hw_init(); bios_init(); midas_init(); m68k_init(); m68k_set_cpu_type(M68K_CPU_TYPE_68000); m68k_set_instr_hook_callback(inst_cb); m68k_pulse_reset(); } void cpu_quit(void) { hw_quit(); SDL_DestroyMutex(cpu_mutex); } void cpu_loop(void) { inf("entering CPU loop"); int32_t count = 0; while (SDL_AtomicGet(&run) != 0) { uint64_t until = SDL_GetPerformanceCounter() + quan; if (SDL_LockMutex(cpu_mutex) < 0) { fail("SDL_LockMutex() failed: %s", SDL_GetError()); } m68k_execute(CPU_FREQ / PER_SEC); uint32_t irq = hw_exec(); if (irq > 0) { ver2("irq %u", irq); } m68k_set_irq(irq); if (SDL_UnlockMutex(cpu_mutex) < 0) { fail("SDL_UnlockMutex() failed: %s", SDL_GetError()); } if ((++count & 0x1ff) == 0) { SDL_Delay(0); } while (SDL_GetPerformanceCounter() < until) { for (int32_t i = 0; i < 100; ++i) { _mm_pause(); } } } inf("leaving CPU loop"); }